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Classification of fold interference patterns: a reexamination 
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Abstract - -A modification of Ramsay's (1967) classification of fold interference patterns is proposed, based upon 
angular parameters in part different from those used by Ramsay. We use the angle between the axes of the first folds 
and the pole to the axial planes of the second folds as one of our parameters (gamma). Use of this angle plus beta, one 
of Ramsay's angles, provides a more natural basis for classification of three-dimensional patterns and in particular 
avoids several ambiguities in Ramsay's scheme. 

INTRODUCTION 

WHERE tWO sets of folds of similar length interfere, the 
layering in rocks assumes complicated three-dimensional 
forms that are reflected in various two-dimensional 
interference patterns (Ramsay 1962, 1967). This paper 
presents a modification and extension of Ramsay's classi- 
fication of such patterns, and some observations that may 
be useful to field workers dealing with interference 
structures. We retain Ramsay's terminology and notation 
as much as possible and also follow him in considering 
only those patterns that result from superposing on the 
first folds, either a shear folding or a shear folding 
combined with homogeneous flattening. The resulting 
patterns are thought to sufficiently represent the range of 
patterns to be encountered in nature, even though natural 
superposed folding, or synchronous cross-folding, must 
rarely occur by such simple deformations. The  interfer- 
ence patterns figured here were calculated by a computer 
program described elsewhere (Thiessen, in press). This 
program permits any number of folding movements to be 
superposed in any desired relative orientations and the 
calculation and display of serial, two-dimensional cross- 
sections in any desired orientation. 

REFERENCE AXES AND INTER-AXIAL ANGLES 

Following Ramsay (1967, p. 521) we designate the shear 
direction in the second axial planes az and the direction 
normal to this in the axial planes b2 (Fig. 1). Poles to the 
first and second axial planes are designated ct and c2 
respectively. The direction of the first fold axis is termed f l  
(Ramsay 1967, fig. 10-2) and the normal t o f t  in the first 
axial planes is dr. Where the first folds are assumed to 
have formed by heterogeneous simple shear on the first 
axial planes, at and bt are respectively the slip direction in 
the first axial planes and the normal to the slip direction. 
Notice that a t and bt describe the movements that 
produced the first folds, while dt and f t  describe the 
orientation of the resulting first fold forms. Only in special 
cases, such as when b~ lies within the original plane of 

layering will a 1 be parallel to d I or bt be parallel t O f r  
Interference effects depend on the orientations of the 

axes a2, bz and c2 relative to dr, f t  and ct, or in other 
words, on the inter-axial angles relating the two sets of 
axes (Fig. 2). In the analyses of Carey (1962) and Ramsay 
(1967) only two of these angles are employed, as indicated 
in Fig. 2. We show below that two angles are, in fact, 
sufficient for classification of three-dimensional interfer- 
ence patterns, but that the best angles for this purpose are 
Ramsay's angle fl and a new angle we call y (Fig. 2). For 
other purposes we retain Ramsay's angle ~t and introduce 
another new angle 6. The first three angles are allowed to 
take values from 0 to + 90 degrees. 

THE ORIENTATION VOLUME 

Various orientations of a2, b2 and c 2 relative to dt,ft 
and c t can be represented by points in a cubic volume with 

FIRST FOLDS 

b,,, ~" o 

\ I \~ .  
\N'-" -- " ,  ' 

• Y¢ \ , ,  x ~k. 
~, \ \ /  

SECOND .¢. ,..a. 
FOLDING "...~ .. \ , 
MOT I0 N S ..,. ..... v 

c/ 

ANGULAR RELATIONS 

Fig. 1. Axes used to describe the relative orientations of the first folds 
and the second folding movements. The wave train drawn in solid lines 
at the left represents real folds in layering after the first movements. The 
wave train drawn at the right represents imaginary folds formed by the 
second movements alone (i.e. in a dyke injected normal to a 2 between the 
two episodes of folding). Below are shown both sets of axes and the 

angles ct, fl, ~ and 6. 
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Fig. 2. Interaxial angles between az, b2 and c2 and d~,f: and Cl. In this 
paper the angles =, #, y and 6 are employed. The angles used by Ramsay 

(1967) and Carey (1962) are designated by R and C respectively. 

~t, fl and y plotted parallel to its edges (Fig. 3a). However, 
not all combinations of 0t, fl and 7 are possible. The first 
constraint is that 

~ + ~ > _ 9 0  °, (1) 

since ~ and ~, are measured from two orthogonal lines (b2 
and c2) to a third line (f:). Combinations of a and y failing 
to satisfy (1) are therefore impossible and this removes 
from consideration the part of the dashed cube below the 
plane marked with a solid line in Fig. 3(b). The second 
constraint arises from the fact that dl,fx and c1 and a2, b2 
and ca are both orthogonal sets of axes, so that the 
orthogonality relations (Nye 1964, p. 34) must hold, 
namely: 

COS2(a2 ^ f l )  + cos2 ~t + cos2y = 1, 

and (2) 

COS2(a2 A d l )  + cos2(a2 A l l  ) + COSZfl = 1. 

Setting the left-hand sides equal yields the necessary 
condition that 

cos 2 ~t + cos 2 y > cos 2 fl, (3) 

since cos2(a2 ^ dl) will always be positive or zero. 
Condition (3) removes from consideration all com- 
binations of =, fl and y lying in front of a curved surface 
that cuts offthe top right corner of the cube (Fig. 3c). The 
remaining volume (Fig. 3d) is the 'orientation volume' 
representing possible relative orientations of the first folds 
and the second folding movements. Ramsay's (1967, p. 
531) classification is projected onto the ~-fl plane of this 
volume, with y unspecified. 

Points on the surfaces ofthe orientation volume (except 
for the point a = fl = y = 90 degrees) represent a single 
orientation of the axes a2, b2 and c2 relative to d~,ft and 
ct. By 'single orientation' we mean one orientation 
together with all symmetrically equivalent orientations. 
For each point inside the orientation volume, however, 
the combination of ~, // and ~ is consistent with two 
different (i.e. not symmetrically equivalent) relative orien- 
tations of the axes. An example is shown in Fig. 4 in which 
a2, b2 and c2 are arbitrarily plotted normal and parallel to 
the plane of the projection.f~ must lie at the intersection of 
a small circle of radius ~ drawn about b2 and a small circle 
of radius y drawn about c2. There is, of course, another 
intersection of the two small circles in the lower hemi- 
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Fig. 3. Diagrams showing the relationship of the orientation volume 
(Fig. 5) and geometric constraints creating it. See text for details. 

sphere immediately beneath the point markedfl  in Fig. 4, 
and indeed another six points with the same ot and y 
values, at i, m and n (three in each hemisphere), if we take 
into account that the axes a2, b2 and c2 do not have 
distinct positive or negative ends. The total of eight f t  
orientations consistent with a single pair of~t and y values 
are equivalent orientations, and we need consider only 
one of them. We choose the one marked ]'1 in Fig. 4 and 
draw in an upper hemisphere great circle normal to f l  
(dashed). This plane must contain the directions of c I and 
dx, arranged so as to form a right-handed orthogonal 
system. A small circle of radius fl about a 2 intersects the 
dashed great circle in points c 1 and c'1, which are the two 
orientations of ci consistent with the given angles =, fl and 
y. Notice that c 1 and c~ are in general differently oriented 
from each other with respect to the a2, b2 and c2 axes. The 
angle 6(c2 ^ c1) is then used to specify one of these 
orientations. This angle is the angle between the two fold 

l 
bz 

Fig. 4. Upper hemisphere stereographic projection showing the two 
orientations of cl resulting from a single set of =, fl, 1' values. See text for 

details. 
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O* 30* 60* 90* 

Fig. 5. Orientation volume with representative interference patterns depicted in the surrounding cubes. Cases J and K are 
represented by points in the interior of the volume; other cases correspond to points on the surface of the volume. In all cases, 
layering was initially parallel to the front cube face. The first folds resembled case D, with initially horizontal axial planes and 
fold axes parallel to the bottom front edge of each cube. The second folding motions are sine waves similar in form to those 
shown in case D, but with varying orientations given by Table 1. First axial planes in their final configuration are shown with 
dotted lines while second axial planes are shown with dashed lines. The former are omitted on the top faces of cubes I -M for 

clarity, but these are all W-M shapes with the trace of the first axial planes paralleling the second axial planes, as in case N and 
Fig. 7. 

axial planes measured in the plane of the two poles. 6 is 
related to at,/~, T by 

- -B + ~/(B 2 - 4AC) 
2A ' (4) cos 6 - 

where 

A = c o s  2 ot -.Jr- c o s  2 ~,  

B = 2 cos y cos/]~/(1 - cos 2 ~t - cos 2 y), 

C = cos 2/~ sin 2 y - cos 2 0t. 

This equation yields one value of 6 for all but one point on 
the outside of the orientation volume, two values for any 
point inside the volume, and all values of 6 (from 0 to 90 
degrees) for the special case where at = // = y = 90 
degrees, for which A = 0. For  points inside the orientation 
volume we have never found a case where the two different 
interference patterns, corresponding to the two different 6 
values, are much different from one another. For  many 
purposes then, the three angles 0t,/~ and ), suffice. 

Figure 5 shows the orientation volume with repre- 
sentative interference patterns around it (A to P). Each 
case is represented by a cube. The first folding episode was 

sinusoidal with a fold axis parallel to the front horizontal 
cube edge and an axial plane parallel to the top face of the 
cube. Bedding was initially parallel to the front face. The 
first fold form can be seen in case D of Fig. 5. The second 
fold form is the same as the first, but has a different 
orientation for each cube (Table 1). The first and second 
fold axial planes are shown with dotted and dashed lines, 
respectively. 

THREE-DIMENSIONAL INTERFERENCE 
PATTERNS 

Three-dimensional interference patterns divide na- 
turally into the four classes recognized by Ramsay (1967, 
pp. 520-533) and called by him Types 0, 1, 2 and 3. The 
classes differ from one another in whether material lines 
and planes along the first fold hinge lines and axial planes 
remain straight and planar or become folded as a result of 
the second movements.  

The simplest angular criteria for the threo-dimensional 
classes are given in terms of/~ and ~ as shown in Fig. 6. 
These criteria are easily understood as follows. In hetero- 
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T a b l e  1. O r i e n t a t i o n s  o f  s e c o n d  a x i a l  p l a n e s  a n d  h 2 for  F ig .  5 c a s e s  A P. 

In F ig .  5, t h e  t o p  c u b e  faces  a r e  a s s u m e d  to  be  h o r i z o n t a l  w i t h  n o r t h  
t o w a r d s  t h e  b a c k  o f  t h e  c u b e  a n d  e a s t  to  t h e  r i g h t .  S t r i k e s  a n d  t r e n d s  a r e  

m e a s u r e d  c l o c k w i s e  f r o m  n o r t h  

S e c o n d  a x i a l  p l a n e  b., 

C a s e  S t r i k e  D i p  T r e n d  P l u n g e  

A 0 ~ 90  ~ 0" 90"  

B 135 ~ 90  ~ 0 ~ 90" 

C 0" 4 5 ~ W  270 ~ 45 ° 
D 90  ~ 90  ~ 0 ~ 90" 

E 0 ~ 0 ~ 90  ~ 0 ° 

F 90  ~ 90  ° 270 ~ 45 ~ 

G 90  ~ 45 ° N 90  ° 0 ° 
H 90  ° 90  ° 90  ° 0 " 

1 35 ~ 60  ~ N W  235 ~ 30 ° 
J 45 ~ 90  ° 225 ° 45 ° 

K 18 ~ 58 ° S E  31 ° 14 ° 
L 59 ° 7 3 ° S E  231 ° 24 ° 

M 45  ~ 90  ° 45 ~ 0 ° 
N 0 ° 90  ° 0 ~ 0 ° 

O 155 ~ 7 3 ° N E  0 ° 55 ° 
p 0 ~ 90  ° 0 o 45 ° 

geneous simple shear, the pre-existing planes that remain 
planar are planes lying parallel to the shear direction, c~ 
must therefore be perpendicular to a 2 for Types 0 and 1, or 
in other words fl must be 90 degrees. The lines that remain 
straight, on the other hand, are lines parallel to the shear 
planes, sof~ must be perpendicular to c2 for Types 0 and 3, 
or ? = 90 degrees. Where neither of these conditions 
prevails (fl # 90 degrees and ), ~ 90 degrees) the second 
movements must fold both the axial planes and the hinge 
lines of the first folds, and patterns of Type 2 necessarily 
emerge. The foregoing statements apply equally well 
where the second movements involve a homogeneous 
flattening combined with the simple shearing, since a 
homogeneous flattening cannot introduce curvature in 
lines and planes. 

pattern arises where a 2 is parallel tof~, so that the second 
folding movements produce no change at all in the form of 
the first folds. Particles are displaced within the folded 
surface in the a2 = f~ direction but the surface itself is not 
further deformed. The a = fl = 7 = 90degrees point of the 
orientation volume is unique in that one can rotate the 
second axes about a 2 without any change in 0t, fl and ? 
while 6 varies from 0-90 degrees. There are thus an 
infinite number of orientations of the two sets of axes with 
~t = fl = 7 = 90 degrees, none of which produce 
recognizable interference forms. Here is an example of the 
inadequacy of a classification scheme based only on 
angles a and ft. We see that where both these angles are 90 
degrees patterns of Type 0 can arise, though Ramsay's 
diagram (1967, p. 531) might lead one to think that 0t = fl 
= 90 degrees must lead to Type 1 patterns and his caption 
indicates that the only values of at and fl that lead to Type 0 
patterns are ct = 0 and fl = 90 degrees. 

The second kind of Type 0 pattern represented by all 
points except the top one along the back, right, vertical 
edge of the orientation volume (fl = ), = 90 degrees, ~ # 
90 degrees) (case E), is the more general kind, where the 
first folds remain plane cylindrical but their amplitude or 
wavelength changes and hinge migration may occur. This 
kind of Type 0 pattern is the most common kind of 
interference pattern, in the sense that it arises continually 
in the course of normal progressive folding, if we regard 
the second movements as simply the next increment of 
deformation in an extended progressive deformation. 
There is thus no difference between the study of this kind 
of Type 0 interference patterns and the study of the purely 
geometric aspects of fold evolution, but this will not be 
pursued further. 

Type 1 patterns 

Type 0 patterns 

In the narrow sense, Type 0 patterns are not in- 
terference patterns at all, since the first folds remain plane 
and cylindrical and there is accordingly 'no characteristic 
pattern of interference' (Ramsay 1967, p. 531) in two- 
dimensional cross sections of such folds. In a broader 
sense, however, the usual sense of the word 'interference' 
in optics, for example, Type 0 patterns are interference 
patterns despite their simplicity. 

We recognize two kinds of Type 0 patterns. The first, 
which plots in the upper fight corner (~ = fl = ? = 90 
degrees) of our orientation volume (Fig. 5, case D) is 
geometrically trivial and mechanically unlikely. This 

Ideal Type 1 (basin and dome) patterns arise for 
orientations that plot on the back triangular face of the 
orientation volume (Fig. 5, cases A, B and C), except for 
the right-hand vertical edge where Type 0 patterns occur. 
Sections cut parallel to the overall orientation of the 
layering after the second movements show the character- 
istic basin and dome patterns, with one layer making a 
continuous network of outcrop where ? + • = 90 degrees. 
Except where a = 90 degrees, lines of domes or of basins 
tend to be arranged en dchelon along the first or second 
axial plane traces, as pointed out by O'Driscoll (1962, pp. 
156-159). 

Type 3 patterns 

FIRST FOLD FIRST FOLD 
HINGE LINES AXIAL PLANES /~ "~ 

TYPE 0 STRAIGHT PLANAR ~ 90" 
TYPE I FOLDED PLANAR 90" ~90" 
TYPE 2 FOLDED FOLDED ~,90' ~',90' 
TYPE 3 STRAIGHT FOLDED ~ 90" 90" 

Fig .  6. A n g u l a r  c r i t e r i a  n e c e s s a r y  for  R a m s a y ' s  f o u r  t y p e s  o f  t h r e e -  
d i m e n s i o n a l  fo ld  i n t e r f e r e n c e  p a t t e r n s .  

Ramsay's ideal Type 3 patterns occur along the a = 0 
edge of his diagram (1967, p. 531), which corresponds to 
the lower right edge of our orientation volume (Fig. 5, 
cases G and H). However, ideal type 3 patterns can also be 
formed at other values of~t, so long as V = 90 degrees (case 
F). In our diagram then, ideal Type 3 patterns arise for all 
orientations on the right, vertical, triangular face of the 
orientation volume, except for its vertical back edge where 
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Type 0 patterns occur. The distinguishing feature of all 
Type 3 patterns is that there always exists a family of two- 
dimensional viewing planes (parallel to f l)  on which the 
outcrop pattern is made up of parallel straight lines. We 
call such patterns linear patterns. The family of planes on 
which linear patterns appear is represented by the front 
and top faces of the blocks in Fig. 5. Viewing planes cut 
perpendicular to fl  show the familiar hook pattern along 
the diagonal ~t = fl and more complicated patterns, again 
with hooks, elsewhere in the y = 90 degree plane. Type 0 
patterns also display this family of linear patterns, but the 
perpendicular viewing plane will show a simple wave 
form. Notice that ideal Type 3 patterns can form at any 
value of ct, so long as y = 90 degrees. They are not 
restricted to situations with at close to zero, as Ramsay's 
classification tends to suggest (Ramsay 1967, pp. 
521-531). 

The hook pattern is sometimes taken as diagnostic of 
Type 3 relations between fold generations (y ~ 90 de- 
grees). We show an example shortly of how an ideal Type 
2 interference form with y = 0 degrees can be sliced to 
yield hook patterns in certain viewing planes. 

If a Type 3 example is formed with very tight folds, it 
may resemble transposed layering, complete with hooks 
and apparently discontinuous layers, particularly if the 
fold limbs are highly attenuated. 

Type 2 patterns 

o k 

o j o i 0 i N N N  
o k 0' k" 0 J 

Fig. 7. Variety of two-dimensional patterns arising for different cuts 
through a type 2 three-dimensional pattern. The top left cube is the same 
case as Fig. 5, case N (~t = 90 °, fl = 0 °, y = 0°}, but is viewed differently. 
The top right cube shows orientations of the six planes cut through this 
case that are represented in the six squares below. It depicts the top, 
front, and right side of a cube, as in the left-hand cube. Dotted and 
dashed lines are traces of first and second axial planes respectively. The 
first folds had vertical axial planes, horizontal hinge lines and a profile 
section represented by the right-hand face of the cube. The second folds 
have vertical axial planes parallel to the side of the cube and introduce 
folds in the first axial planes with a profile shown on the top face of the 

cube. 

Type 2 patterns arise for combinations of ,t, fl and ~, 
plotting in the interior of the orientation volume or on its 
top o r  bottom surfaces. One of our aims has been to 
discover whether there is any natural way to subdivide 
Type 2 patterns. We have searched in particular for two- 
dimensional patterns that arise within the Type 2 volume 
and that are distinctive of various parts of the volume. So 
far we have had little success in this, partly because Type 2 
patterns can be sliced to yield a wide variety of two- 
dimensional patterns of which Fig. 7 shows an example. 
The block diagram (Fig. 7, upper left) shows a Type 2 
pattern as far as possible from the Type 1 and Type 3 
planes of the orientation volume: ~t = 90 degrees and fl = 
7 = 0 degrees (Fig. 5, case N). First folds with vertical axial 
planes and hinge lines oriented normal to the side of the 
block diagram have been refolded by shearing on planes 
parallel to the side of the block in a direction normal to the 
front of the block. The three faces of the block itself, and 
the six additional viewing surfaces sliced in various more 
general orientations through the block, show how a 
variety of two-dimensional patterns can be associated 
with a single three-dimensional pattern. Simple sine 
waves are seen on the side of the block. What might be 
called 'repeated sine waves' are seen on the top surface 
where one black layer and one white layer occur re- 
peatedly in the apparent stratigraphy. The front face 
shows 'W' and 'M' patterns that arise in this orientation 
whenever the half wavelength of the first folds is less than 
the amplitude of the second 'folds' (for example, the folds 
that would have arisen in a dyke injected perpendicular 

to a 2 between the two folding episodes). In other cuts one 
sees various symmetric and non-symmetric crescents 
(4-6) normally associated with Type 2 patterns, as well as 
arrows (1) and very complex shapes (3), and also hooks 
(2). It appears that hooks can appear in some sections 
through most Type 2 patterns, so their existence in a map 
pattern or exposure surface should not by itself be taken 
to indicate Type 3 interaxial relations. Similarly, sine 
wave patterns can appear in sections cut through any 
Type 1 or Type 2 pattern which are parallel to the second 
axial plane or the a2-fl plane, and so are not diagnostic of 
Type 0 patterns. 

The only really distinctive two-dimensional patterns we 
are aware of are those seen in sections that one knows to 
be cut parallel to the overall attitude of the original 
layering. In such sections, three-dimensional patterns of 
Types 0 and 3 show straight lines, Type 1 displays closed 
rectangles or loops, and Type 2 is characterized by 
crescents or repeated sine waves. These distinctive pat- 
terns repeat on a lattice governed by the wavelengths of 
the folds and the interaxial angles. The repeated sine wave 
pattern (e.g. top surface of block, Fig. 7) occurs when a2 
lies parallel to the overall orientation of layering after the 
first folding. In the orientation volume of Fig. 5 this can 
occur on or near the top curved surface (cases L, M and 
N). 

Asymmetric first folding 

We have calculated a number of interference patterns 
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that arise when the second folding movements are 
superposed on asymmetrical first folds. The various three- 
dimensional Types are still easily recognizable and con- 
form to the angular criteria set out in Fig. 6. An interesting 
situation arises when there are two different orientations 
of layers present before the first folding, such as bedding 
and cross-cutting veins, so that two different f l  orien- 
tations can arise although Ca is the same for both kinds of 
layers. In this situation (see Fig. 2), fl and 6 will be the same 
for both kinds of layers but different values of ~t and y may 
arise for the beds and the veins. This makes it possible for 
the beds to undergo Type 2 refolding while the veins 
undergo Type 3, or vice versa. Or the beds could be 
refolded into a Type 1 basin and dome configuration 
while the veins develop a simple Type 0 configuration. In 
the latter case, the veins, with their simple fold forms, 
might easily be misinterpreted as having been emplaced 
after the first folding but before the second. 

0 ° 

9O" 

60 ~ 

30- 

Y---l, 
3O" 60" 

i I i I l 

TYPE I BASIN AND DOME 

TYPE I-2 TRIANGULAR 

TYPE 2 CRESCENT 

90' 

Fig. 8. fl-y projection of the orientation volume, showing regions of the 
various fold types. Boundaries are gradationai. Simple (Type 0) patterns 
are in the upper right corner and Triangular is a gradational region 

(1 --,2). 

The fl-~ projection 

The simplest two-dimensional projection of the orien- 
tation volume of Fig. 5 is obtained by viewing it parallel to 
the 0t axis. In such a projection, a fl-y projection, all 
possible patterns of Type 0 plot in one corner, and all 
possible patterns of Types 1 and 3 plot along two edges of 
the diagram (Fig. 8). This simple result is not obtained if 
one views the orientation volume along the ~ axis, as 
Ramsay does in effect in obtaining his 0t-fl projection. 
Remembering that patterns of Types 0, 1 and 3 plot 
respectively along the vertical edge and the two vertical 
bounding planes of the orientation volume, it can be seen 
from Fig. 5 that an ~,-fl projection of the volume will have 
patterns of Types 0 and 1 occupying one edge of the 
projection and patterns of Type 3 spreading over half the 
area occupied by patterns of Type 2. The fl-? projection 
contains no such overlaps because it is obtained by 
projecting parallel to the line in the orientation volume 
that is common to the Type 1 and Type 3 planes and 
which also happens to be the Type 0 lines. 

In Fig. 8 we have labelled five fields according to the 
kind of diagnostic two-dimensional patterns that arise 
and the type of three-dimensional relations that obtain, or 
approximately obtain. All the boundaries are gradational 
and vary about + 5 degrees as ~t varies. Patterns of basin 
and dome type with oval or four-sided outcrop patterns 
are characteristic of situations with very high values of ft. 
With decreasing fl these patterns grade, through a field 
with triangular closed outcrop patterns (cf. Ramsay, fig. 
10-13, parts D and E), into the crescents, hearts, mush- 

rooms and arrows that characterize many sections th- 
rough Type 2 patterns. Two-dimensional patterns that 
are not so distinctive are simple sine waves (that occur in 
Types 0, 1 or 2), hooked or birdshead patterns (Types 2, 3) 
and straight line patterns (Types 0, 1). 

CONCLUSIONS 

The main modifications of Ramsay's classification of 
interference patterns suggested here are: (1) that a more 
satisfactory, though admittedly more complicated, classi- 
fication requires use of at least three inter-axial angles 
rather than just two angles; and (2) that where only two 
angles are to be used, the fl-7 pair is superior to the 0t-fl 
pair. 
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